OPERATIONALLY COGNISANT DESIGN THE CAPITAL PROCESS

Allen Brown and Nick Schilov (Hiway Group)

OPERATIONALLY COGNISANT DESIGN – THE CAPITAL PROCESS

Nick Schilov & Allen Browne

The Site(s)

Motorway Environment

- SH1 1050 / 2.760 3.810 D R2
- National Strategic High Volume
- Single lane treatment

CJP191 South of Whitford Brown

- Traffic
 - AADT = 27,863
 - HCV = 8%
 - \circ DESA = 3.54 x 10⁷
- Pavement
 - Lane R2 (outer)
 - o Bound by R1 & Shoulder
 - Pavement 600mm+
 - Cracking & pothole repairs

Nick Schilov & Allen Browne

Primary Failure Indicators

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

Primary Failure Indicators

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

Primary Failure Indicators

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

Primary Material Concerns

Sample Pl	Plasticity Inc	dex 13 ± 2	Sample description:		Existing Subbase	Existing Basecourse
Specification		<- 5	History		Air Dried	As received
			 Passing mm (-19mm) 	%	68	72
			Cement additive	%	0	0
			Curing time	days	n/a	n/a
R 2	Defl (mm)	Curv (mm)	Surcharge mass	kg	4	4
Average	0.48	0.12	Sample condition:		Soaked	Soaked
05% ilo	0.68	0.10	Soaking time	days	4	4
95% IIE	0.08	0.19	Swell	%	0	0
Std Dev	0.12	0.04	W/c as rec'd (whole)	%	4.4	n/a
COV%	25	35	W/c as comp. (-19mm)	%	5.2	4.1
			Dry density	t/m³	2.30	2.27
			Compaction	%	NZ Vib H ¹	NZ Vib H ¹
			W/c after test	%	6.2	5.4
			Penetration	mm	25	2 5
			CBR value	%	225	250

Nick Schilov & Allen Browne

Primary Material Concerns

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

Drainage Issues

Depth	Pavemen	
(mm)		
0	OGPA with nothing notable RWP r	
30	Asphalt mix 15	
130	Sandy fine to common (40mm) GRAVET	
100	tightly paged; wet well graded; angula	
	and fine to come fine low placiticity	
	sand fille to coarse, thes low plasticetty.	
260	Eins to cook of 160 ments ER ALVER	
200	Fine to coarse (bumm) CRAVEL, with s	
	tightly packed; wet; well graded; suban	
	sand fine to coarse, nnes low plasificity.	
500	Become very wet.	
600	End of pit	
		Contract and a second by the second

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

Failure Mode

TP6 - 3.54x10 ⁷	Thickness (mm)	Modulus (MPa)	S L/NS L	C ritical S train	Critical Damage Factor
S urfacing	65	1400	NS L	5.57E-04	2.96E +02
Basecourse	535	220	S L	n/a	n/a
S ubbas e	-	-	-	n/a	n/a
Upper S G 1	250	50	NS L	6.26E-04	2.67E -01
Lower SG2	0	200	NS L	1.08E-04	1.21E -06

OPERATIONALLY COGNISANT DESIGN

The Constraints

Traffic

- Lane MUST be open to AM peak
- Single central lane treatment no steps transverse or longitudinal
- Need to ensure it's safe
- Speed intended to be 50km/h

The Options

Cement – No

- Traffic loading
- Moisture sensitivity
- Possible reversion to unbound
- Risk of cracking if bound
- Sensitive to cement%

AC – Maybe

- Status Quo for expressway single lane work
- Low design/construct risk
- Small productivity for multiple lifts
- Expensive sqm rate

Foamed Bitumen - Maybe

- Perceived risk over performance on motorways
- Materials respond well to mix design
- Able to be trafficked
- Substantially cheaper on sqm rate with improved productivity

Nick Schilov & Allen Browne

The Treatment – Foamed Bitumen Single Lane

Checked Reactivity

Test Pit 2 (TP17) (RP 3.579 LWP)	40% Existing Basecourse + 30% Granulated Surfacing + 30% Winstones Belmont AP40	Foamed Bitumen Testing	2 nd Phase Modulus 1,342MPa
Test Pit 1R (TP16R) (RP 3.800 RWP)	70% Existing Basecourse + 30% <u>Horokiwi</u> AP40	Foamed Bitumen Testing	2 nd Phase Modulus 1,273MPa

OPERATIONALLY COGNISANT DESIGN

How to Build It?

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

How to Build It?

Import AP40 & Foamed Bitumen Stabilise to

250mm

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

How to Build It?

Compaction

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

Run Traffic at low speed and VMS requesting HCV's use other lane (R1)

Typically 48 hours until milling

Mill off 50mm, tidy up and surface with membrane & OGPA

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

Finished Product

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

Learnings

Milling off the 50mm found surface texture rougher than hoped, but to be expected with 40mm aggregate and not strongly bound

Some minor ravelling acceptable as long as loose material removed quickly

Traffic was speeding so bumper strips introduced

Performing well

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

Performance

OPERATIONALLY COGNISANT DESIGN

17" NZ Transport Agency & NZIHT ANNUAL CONFERENCE

Nick Schilov & Allen Browne

Performance

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

Continue with this successful treatment this season

Try finishing the stabilised layer to underside of surfacing – traffic constraints to be resolved

Ongoing monitoring

OPERATIONALLY COGNISANT DESIGN

Nick Schilov & Allen Browne

THE END

For more information, visit www....

.....